The Importance of Being Bounded ?
نویسندگان
چکیده
In this paper we introduce and study a new class of hybrid automata, Independent Dynamics Hybrid Automata (IDA). IDA are an extension of decidable O-minimal automata in which also identity resets are allowed. We define the conditions under which reachability is decidable over IDA. These conditions involve the satisfiability of first-order formulæ that limit the interval of time we need to consider to study reachability. In order to prove the decidability of reachability we mainly exploit the decidability of the first-order formulæ which define IDA. Then we introduce the subclass ∞IDA of IDA over which reachability is always decidable. An interesting subclass of ∞IDA is the class of IDA whose flows are non-constant polynomials. IDA and∞IDA are usefull in the modeling of biological systems where it is possible to have variables which continue their flows independently (e.g., input reactants coming from other systems). We briefly comment on how to model bacterial chemotaxis using
منابع مشابه
A brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices
The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...
متن کاملModeling of a Probabilistic Re-Entrant Line Bounded by Limited Operation Utilization Time
This paper presents an analytical model based on mean value analysis (MVA) technique for a probabilistic re-entrant line. The objective is to develop a solution method to determine the total cycle time of a Reflow Screening (RS) operation in a semiconductor assembly plant. The uniqueness of this operation is that it has to be borrowed from another department in order to perform the production s...
متن کاملOn the Dynamic of a Nonautonomous
Nonlinear difference equations of higher order are important in applications; such equations appear naturally as discrete analogues of differential and delay differential equations which model various diverse phenomena in biology, ecology, economics, physics and engineering. The study of dynamical properties of such equations is of great importance in many areas. The autonomous difference equat...
متن کاملLog-Normal and Mono-Sized Particles’ Packing into a Bounded Region
Many systems can be modeled with hard and various size spheres, therefore packing and geometrical structures of such sets are of great importance. In this paper, rigid spherical particles distributed in different sizes are randomly packed in confined spaces, using a parallel algorithm. Mersenne Twister algorithm was used to generate pseudorandom numbers for initial coordination of particles. Di...
متن کاملLocalization at prime ideals in bounded rings
In this paper we investigate the sufficiency criteria which guarantee the classical localization of a bounded ring at its prime ideals.
متن کاملTOWARDS THE THEORY OF L-BORNOLOGICAL SPACES
The concept of an $L$-bornology is introduced and the theory of $L$-bornological spacesis being developed. In particular the lattice of all $L$-bornologies on a given set is studied and basic properties ofthe category of $L$-bornological spaces and bounded mappings are investigated.
متن کامل